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Set up for the phrase
Start with a space H (or a moduli problem):

points ppp ⇔ objects Wppp with an attached group G

(not dependent on ppp). Assume G has a functorial

profinite cover G∗ (determined by H).
“Profinite arithmetic geometry:” Any quotient H

of G∗ mapping through G gives a collection CH(Wppp)
of objects mapping to W . Expect this for the

projective system of those CH(Wppp), running over H:
Group cohomology of G∗ interprets significant

properties of the projective system {CH(Wppp)}H.
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ModularTowers: Unramified extensions of a cover
P1

z = Cz∪̇{∞} is the project z-line; and Wppp is

a compact Riemann surface (geometrically Galois)

cover ϕ : X → P1
z with group G (of order divisible

by p). It has a Nielsen class Ni(G,C)in.
Extensions: Unramified extensions ψ : Y → X of

ϕ, with ϕ ◦ ψ Galois (group H) as ϕ varies.
If H → G splits, then ϕ◦ψ has the form W ×P1

z
X

(W → P1
z maybe not Galois). Unless H → G

Frattini, there is a proper factorization of ϕ : Y →
Y ′ → X, presenting Y as W ×P1

z
Y ′.
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Part I. 1st Fratt. Principle and the group Mggg

Restrict to most mysterious part: Covers without

such a factorization. Denote these Cϕ.
Assume G is p-perfect. We’ll show structure on

Cϕ, based on cohomology of two groups:

• universal p-Frattini cover pG̃ of G; and a
• dim 2 p-Poincaré Dual group Mϕ,p.

Both groups are virtually pro-p. Most significant is

how much Mϕ,p depends on ϕ.
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Use Nielsen classes

Ni(G,C)in def= {(g1, . . . , gr) |
g1 · · · gr

def= Π(ggg) = 1, ggg ∈ C, 〈ggg〉 = G}.
Given the Nielsen class association with a cover,

ϕ ↔ ggg ∈ Ni(G,C)in, characterize CH(ϕ) as

{gggH ∈ Ni(H,C)in with gggH mod G = ggg}.
FP1 — Why p′ conjugacy classes C?:
With g ∈ G and pu||ord(g), u ≥ 1,

then g′ ∈ G1 over g =⇒ pu+1||ord(g).
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Defining Mggg and related groups

Define Dσ̄σσ: Presented as 〈σ̄1, . . . , σ̄r〉 modulo the

normal subgroup generated by

σ̄σσ
def= {σ̄ord(gi)

i , i = 1, . . . , r, and σ̄1 · · · σ̄r}.

Define Mggg: Complete Dσ̄σσ using p-power index

subgroups of ker(Dσ̄σσ → G), normal in Dσ̄σσ. Tacit:

Mggg has distinguished generators σ̄1, . . . , σ̄r.
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Define K̃σ̄σσ∗:

Remove relation σ̄1 · · · σ̄r = 1 from Dσ̄σσ. Denote

generators by σ̄∗
1, . . . , σ̄

∗
r :

{〈σ̄∗
i 〉/(σ̄∗

i )
ord(gi)}r

i=1 freely generate Kσ̄σσ.

Complete Kσ̄σσ∗ using p-power index subgroups of

ker(Kσ̄σσ∗ → G), normal in Kσσσ. Form a natural

surjection ψσ̄σσ∗ : K̃σ̄σσ∗ → Mggg.
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Geometric construction of Mggg and Kσ̄σσ∗

Suppose gggk ∈ Ni(Gk,C) lies over ggg ∈ Ni(G,C).

Lemma 1. Mapping Mggg generators σ̄1, . . . , σ̄r to
entries of kggg gives a homomorphism μk :Mggg→ Gk.

If h∗
1, . . . , h

∗
r ∈ C ∩ Gr

k+1 lie (resp.) over entries
of kggg, then μk+1 : K̃σ̄σσ∗ → Gk+1 by σ̄∗

i �→ h∗
i , i =

1, . . . , r, extends μk.
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Part II.Inflation toMggg = Mggg,p and Lift Invariants

Main goal: Cohomological characterizations

1. When is each of the CGk
(ggg) nonempty.

2. When for each gggk ∈ CGk
(ggg) and k′ > k, the

collection CGk′(gggk) is nonempty.

One-one correspondence: Mggg → G factoring

through H → G ⇔ gggH ∈ CH(ggg). Denote the

corresponding map Mggg → H by ψgggH
.
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Fundamental limit group questions

Let {gggk ∈ CGk
(ggg)}∞k=0} = g̃gg be a projective

sequence. Defines a cusp branch.
These define a component branch: {Ni′k}∞k=0, Ni′k

the braid orbit of gggk (p. 12).

Definition 2.Then, g̃gg defines a homomorphism

ψg̃gg : Mggg → pG̃. This ψg̃gg (up to braid equivalence)

gives pG̃ as a limit group of ψggg.
Expression (1) (resp. (2)) means pG̃ is a (resp. the

only) isomorphism class of limit groups for the

standard component tree.
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Cohomology start:

With Mk = ker(Gk+1→Gk),
dimZ/p(H2(Gk, Mk)) = 1 [Fr95, Lem. 2.3].

Lemma 3. [Fr05c, Lem. 4.15], [We05, Prop. 3.2]
For gggk ∈ CGk

(ggg), the obstruction to finding
gggk+1 ∈ CGk+1

(gggk) is inflation infGk+1,Gk
(ψgggk

) to
H2(Mggg, Mk) of a generator of H2(Gk, Mk).

Denote maximal quotient of Mk on which Gk acts

trivially by Scp,k = Sck: exponent p quotient of Schur

multiplier of Gk.
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The lifting invariant sk

Kernel of natural cover Rk → Gk identifies withSck.

Lemma 4.Over ggg′ = (g′1, . . . , g
′
r) ∈ Ni(Gk,C) is a

unique ggg′′ ∈ (Rk)r ∩ C. This defines

sk(ggg′) ∈ ker(Rk → Gk) as Π(ggg′′) def= g′′1 · · · g′′r .
CGk+1

(ggg′) nonempty =⇒ sk(ggg′) = 0 (add. not.).
[Ser90a] defines sk when Gk = An and Rk → Gk

is the Spin cover of An. I give examples later of

computing this and higher cases.
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Part III. p-Poincaré duality gives sufficiency for

CGk+1
(gggk) �= ∅

Proposition 5.Lem. 4 condition is sufficient:

α̃
def= inf

Gk+1,Gk

(ψgggk
) �= 0 =⇒ sk(gggk) �= 0.

Use μk+1 of Lem. 1 for an explicit obstruction to

lifting Mggg → G. For ḡ ∈ Mggg choose hḡ ∈ Gk as the

image in Gk of a lift to K̃σ̄σσ∗ ∩ C over ḡ.
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Compute the 2-cocycle

α̃(ḡ1, ḡ2) = hḡ1hḡ2(hg1g2)
−1, ḡ1, ḡ2 ∈ Mggg

describing the obstruction.
As ψσ̄σσ∗ is a homomorphism, the discrepancy

between α(ḡ1, ḡ2) and 1 is the leeway in reps. for

hg1g2 lying over g1g2.
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When the cocycle α̃(ḡ1, ḡ2) vanishes

Each α̃(ḡ1, ḡ2) is a word in ker(Kσ̄σσ∗ → Mggg),
products of conjugates of h∗

1 · · ·h∗
r. It vanishes

if you can choose (h∗
1, . . . , h

∗
r) (as in Lem. 1) so

h∗
1 · · ·h∗

r = 1. Recall: Dual of M ∗
k as an Mggg module

is Hom(Mk, Qp/Zp) = Hom(Mk, Z/p), (Qp/Zp is the

duality module for Mggg).
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Apply p-Poincaré duality:

(D2,0) H2(Mggg, Mk)×H0(Mggg, M
∗
k) → H2(Mggg, Z/p)

is a perfect pairing (apply β ∈ H0(Mggg, M
∗
k) to values

of a 2-cycle in H2(Mggg, Mk)).
Identify H0(Mggg, M

∗
k) with

H0(Mggg, D ⊗ Mk) � D ⊗Z/p[Mggg] Mk,

with D = Z/p (as Z/p[Mggg] module).
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Scp,k appears (p. 7):

So, the tensor product D ⊗Z/p[Mggg] Mk is the

maximal quotient of Mk on which Mggg (and so Gk)

acts trivially. So, Identify D ⊗Z/p[Mggg] Mk with Scp,k.

Now pair α̃(•, •) ∈ H2(Mggg, Mk) against

β ∈ H0(Mggg, M
∗
k). Further, regard β

def= βR as the

linear functional on Mk from the kernel of the induced

map Gk+1 → R, with R → Gk a central extension

with Z/p = ker(R → Gk).
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Conclusion of the result

Let ggg be the image of (h∗
1, . . . , h

∗
r) in Ni(Gk,C). So,

βR(α̃) = sR(ggg), the lifting invariant value.

The pairing is perfect. Conclude: Obstruction to

extend Mggg → Gk to Mggg → Gk+1 is trivial if and only

if sR(ggg) is trivial over all such R → Gk.
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Part IV. Basic Braid Orbit questions

Hurwitz monodromy group Hr = 〈q1, . . . , qr−1〉
acts on {Mggg}ggg∈Ni(G,C) and on

{Mg̃gg}{g̃gg∈{ lim
←k

CGk
(ggg)}.

Here’s qi on distinguished generators: (σ̄1, . . . , σ̄r)

�→ (σ̄1, . . . , σ̄i−1, σ̄iσ̄i+1σ̄
−1
i , σ̄i, σ̄i+2, . . . , σ̄r).
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Projective sequence of spaces:

Any Mg̃gg gives a braid orbit {(g̃gg)q}q∈Hr

def= Õ: For

g̃gg ∈ Õ, all the Mg̃gg are isomorphic.

Õ defines a projective sequence of reduced Hurwitz

space components H̃Õ
def= {HÕ,k}∞k=0.

Abelianization: Replacing pG̃ by its abelianization

pG̃/(ker0, ker0) produces corresponding spaces. Let

R → G0 be the maximal central p extension of

G0. Analog for abelianization in Prop. 5 for

projective sequence of components requires just one

test, sR(ggg0) = 0, but ker(R → G0) may not have

exponent p. Resulting spaces like Shimura varieties.
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The Main Conjecture and �-adic points

1. For a braid orbit O in a Nielsen class Ni(G,C),
how to assure there is such a Õ extending O?

2. Given Õ from (1), when can you guarantee some

number field is a definition field for all levels of

H̃Õ: Õ defines a PSCK?

3. Given (2), could all levels have K points?
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Results to questions have come entirely through

properties of projective systems of cusps!!

This approach — non-obviously — generalizes

aspects of modular curves.

Proposition 6.Assume Õ satisfies (3). With K ′ a
completion of K at a prime not dividing |G|, there
is a projective system of K ′ cusps.

An outline, based on generalizing [DEm04], says

the conclusion of Prop. 6 implies a special projective

system {gggk ∈ Ni(G,C)in}∞k=0: g-p′ cusp branch.
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Part V. g-p′ Cusps and 2nd Fratt. Princ.

Definition 7 (g-p′ cusps). Let p, prime, divide

|G|, p′ classes C, ggg =∈ Ni(G,C). Then, ggg

defines a (first order) g-p′ cusp if it partitions as

(g1, . . . , gi1, gi1+1, . . . , gi2, . . . , git) so:

[p′ part.] 〈gij+1, . . . , gij+1
〉 = Gj is a p′ group; and

[p′ gen.]〈Π(gij+1, . . . , gij+1
), j = 1, . . . , t〉 is also a p′ group.

App. B1 has higher order (inductive) g-p′ cusps.
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2nd Fratt. Princ: For ggg ∈ Ni(G,C) a g-p′ cusp,

there is a Õ extending its braid orbit Oggg (as in (1)).
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An examples of two braid orbits from lifting inv.

Example 8 (An and 3-cycles).For each pair (n, r)
with r ≥ n, there are exactly two braid orbits on

Ni(An,C3r). One contains a g-2′ representative and

the other is obstructed at level 0. Braid orbit reps

for n = r = 4 (see App. B2 in Talk 2):

ggg4,+ = ((1 3 4), (1 4 3), (1 2 3), (1 3 2)),
ggg4,− = ((1 2 3), (1 3 4), (1 2 4), (1 2 4)).
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Nonbraidable, isomorphic Mg̃gg

Suppose two extensions Mgggi
→ G, arise from

gggi ∈ Ni(G,C), i = 1, 2. Assume they are isomorphic.

Still might not be braidable.

The Nielsen class Ni(G1(A4),C±32) has six braid

orbits. Two extensions correspond to the two

H-M components called H+,β
1 , H+,β−1

1 . An outer

automorphism of G1(A4) takes ggg1 to ggg2, giving

elements in different braid orbits. These are H-

M components, so FP2 gives isomorphic extensions

Mgggi
→ pG̃, i = 1, 2 in distinct braid orbits.
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App. A1: Full limit group questions

Consider all quotients H of pG̃ (rather than just

Gk s). You get a much bigger world of limit groups:

limit group over ggg ∈ Ni(G,C) is a maximal projective

sequence of such H s with CH(ggg) not the emptyset.

Proposition 9.Akin to Prop. 5, if G∗ is a full limit
group, it has this property:

Z/p extension: There is only one possible
Frattini extension R∗ → G∗ of G∗ → G with kernel
a Z/p module. Then, ker(R∗ → G∗) = Z/p, and
sG∗ gives the obstruction.
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Revisiting nonelementary modular curves: For

each odd p, Ni((Z/p)2 ×s{±1},C24) has exactly one

limit group, (Zp)2 ×s {±1}. This is an alternate

description of all modular curves. A universal

Heisenberg group gives the obstruction running over

all odd p [Fr05c, App. A.2].
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App. B1: Higher Order g-p′ Cusps

Def.: (possibly higher order) g-p′ cusps. (Darren

Semmen): Some rooted planar tree, has elements of

G labeling its vertices, and these hold.

1. The root has label 1.
2. The leaves of the tree have labels g1, . . . , gr in

clockwise order.
3. Labels of vertices one level up and adjacent to

vertex x generate a p′-group with their product (in

clockwise order) the label of x.
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Harder to detect, but includes more possibilities

than 1st order g-p′ reps. FP2 says such a ggg has a

braid orbit whose p-Nielsen limit is pG̃.
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