The phrase "Profinite Arithmetic Geometry" Red Lodge, Wednesday April 5

Part I. 1st Fratt. Principle and the group M_{g}
Part II. Inflation to $M_{g}=M_{g, p}$ and Lift Invariants
Part III. p-Poincaré duality gives sufficiency for $C_{G_{k+1}}\left(\boldsymbol{g}_{k}\right) \neq \emptyset$ Part IV. Basic Braid Orbit questions
Part V. g-p Cusps and 2nd Fratt. Princ.
App. A. Full limit group questions
App. B_{1}. Higher Order $\mathrm{g}-p^{\prime}$ Cusps

Set up for the phrase

Start with a space \mathcal{H} (or a moduli problem): points $\boldsymbol{p} \Leftrightarrow$ objects W_{p} with an attached group G (not dependent on \boldsymbol{p}). Assume G has a functorial profinite cover G^{*} (determined by $\left.\mathcal{H}\right)$.
"Profinite arithmetic geometry:" Any quotient H of G^{*} mapping through G gives a collection $C_{H}\left(W_{p}\right)$ of objects mapping to W. Expect this for the projective system of those $C_{H}\left(W_{p}\right)$, running over H : Group cohomology of G^{*} interprets significant properties of the projective system $\left\{C_{H}\left(W_{p}\right)\right\}_{H}$.

ModularTowers: Unramified extensions of a cover $\mathbb{P}_{z}^{1}=\mathbb{C}_{z} \dot{\cup}\{\infty\}$ is the project z-line; and W_{p} is a compact Riemann surface (geometrically Galois) cover $\varphi: X \rightarrow \mathbb{P}_{z}^{1}$ with group G (of order divisible by p). It has a Nielsen class $\operatorname{Ni}(G, \mathbf{C})^{\text {in }}$.

Extensions: Unramified extensions $\psi: Y \rightarrow X$ of φ, with $\varphi \circ \psi$ Galois (group H) as φ varies.

If $H \rightarrow G$ splits, then $\varphi \circ \psi$ has the form $W \times_{\mathbb{P}_{z}^{1}} X$ $\left(W \rightarrow \mathbb{P}_{z}^{1}\right.$ maybe not Galois). Unless $H \rightarrow G$ Frattini, there is a proper factorization of $\varphi: Y \rightarrow$ $Y^{\prime} \rightarrow X$, presenting Y as $W \times_{\mathbb{P}_{z}^{1}} Y^{\prime}$.

Part I. 1st Fratt. Principle and the group M_{g}
Restrict to most mysterious part: Covers without such a factorization. Denote these \mathcal{C}_{φ}.

Assume G is p-perfect. We'll show structure on \mathcal{C}_{φ}, based on cohomology of two groups:

- universal p-Frattini cover ${ }_{p} \tilde{G}$ of G; and a
- dim 2 p-Poincaré Dual group $M_{\varphi, p}$.

Both groups are virtually pro- p. Most significant is how much $M_{\varphi, p}$ depends on φ.

Use Nielsen classes

$\mathrm{Ni}(G, \mathbf{C}) \stackrel{\text { in }}{\stackrel{\text { def }}{=}\left\{\left(g_{1}, \ldots, g_{r}\right) \mid\right.}$

$$
\left.g_{1} \cdots g_{r} \stackrel{\text { def }}{=} \Pi(\boldsymbol{g})=1, \boldsymbol{g} \in \mathbf{C},\langle\boldsymbol{g}\rangle=G\right\} .
$$

Given the Nielsen class association with a cover, $\varphi \leftrightarrow \boldsymbol{g} \in \mathrm{Ni}(G, \mathbf{C})^{\text {in }}$, characterize $C_{H}(\varphi)$ as
$\left\{\boldsymbol{g}_{H} \in \mathrm{Ni}(H, \mathbf{C})^{\text {in }}\right.$ with $\left.\boldsymbol{g}_{H} \bmod G=\boldsymbol{g}\right\}$.
FP1 -Why p^{\prime} conjugacy classes \mathbf{C} ?:
With $g \in G$ and $p^{u} \mid \operatorname{ord}(g), u \geq 1$,
then $g^{\prime} \in G_{1}$ over $g \Longrightarrow p^{u+1} \| \operatorname{ord}(g)$.

Defining M_{g} and related groups

Define $D_{\bar{\sigma}}$: Presented as $\left\langle\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{r}\right\rangle$ modulo the normal subgroup generated by

$$
\bar{\sigma} \stackrel{\text { def }}{=}\left\{\bar{\sigma}_{i}^{\operatorname{ord}\left(g_{i}\right)}, i=1, \ldots, r, \text { and } \bar{\sigma}_{1} \cdots \bar{\sigma}_{r}\right\} .
$$

Define M_{g} : Complete $D_{\bar{\sigma}}$ using p-power index subgroups of $\operatorname{ker}\left(D_{\bar{\sigma}} \rightarrow G\right)$, normal in $D_{\bar{\sigma}}$. Tacit: M_{g} has distinguished generators $\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{r}$.

Define $\tilde{K}_{\bar{\sigma}^{*}}$:

Remove relation $\bar{\sigma}_{1} \cdots \bar{\sigma}_{r}=1$ from $D_{\bar{\sigma}}$. Denote generators by $\bar{\sigma}_{1}^{*}, \ldots, \bar{\sigma}_{r}^{*}$: $\left\{\left\langle\bar{\sigma}_{i}^{*}\right\rangle /\left(\bar{\sigma}_{i}^{*}\right)^{\operatorname{ord}\left(g_{i}\right)}\right\}_{i=1}^{r}$ freely generate $K_{\bar{\sigma}}$.

Complete $K_{\bar{\sigma}^{*}}$ using p-power index subgroups of $\operatorname{ker}\left(K_{\bar{\sigma}^{*}} \rightarrow G\right)$, normal in K_{σ}. Form a natural surjection $\psi_{\bar{\sigma}^{*}}: \tilde{K}_{\bar{\sigma}^{*}} \rightarrow M_{g}$.

Geometric construction of M_{g} and $K_{\bar{\sigma}^{*}}$

Suppose $\boldsymbol{g}_{k} \in \operatorname{Ni}\left(G_{k}, \mathbf{C}\right)$ lies over $\boldsymbol{g} \in \operatorname{Ni}(G, \mathbf{C})$.
Lemma 1. Mapping M_{g} generators $\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{r}$ to entries of ${ }_{k} \boldsymbol{g}$ gives a homomorphism $\mu_{k}: M_{g} \rightarrow G_{k}$.

If $h_{1}^{*}, \ldots, h_{r}^{*} \in \mathbf{C} \cap G_{k+1}^{r}$ lie (resp.) over entries of ${ }_{k} \boldsymbol{g}$, then $\mu_{k+1}: \tilde{K}_{\bar{\sigma}^{*}} \rightarrow G_{k+1}$ by $\bar{\sigma}_{i}^{*} \mapsto h_{i}^{*}, i=$ $1, \ldots, r$, extends μ_{k}.

Part II.Inflation to $M_{g}=M_{g, p}$ and Lift Invariants
Main goal: Cohomological characterizations

1. When is each of the $C_{G_{k}}(\boldsymbol{g})$ nonempty.
2. When for each $g_{k} \in C_{G_{k}}(\boldsymbol{g})$ and $k^{\prime}>k$, the collection $C_{G_{k^{\prime}}}\left(\boldsymbol{g}_{k}\right)$ is nonempty.

One-one correspondence: $\quad M_{g} \rightarrow G$ factoring through $H \rightarrow G \Leftrightarrow \boldsymbol{g}_{H} \in C_{H}(\boldsymbol{g})$. Denote the corresponding map $M_{g} \rightarrow H$ by $\psi_{\boldsymbol{g}_{H}}$.

Fundamental limit group questions

Let $\left.\left\{\boldsymbol{g}_{k} \in C_{G_{k}}(\boldsymbol{g})\right\}_{k=0}^{\infty}\right\}=\tilde{\boldsymbol{g}}$ be a projective sequence. Defines a cusp branch.

These define a component branch: $\left\{\mathrm{Ni}_{k}^{\prime}\right\}_{k=0}^{\infty}, \mathrm{Ni}_{k}{ }_{k}$ the braid orbit of \boldsymbol{g}_{k} (p.12).
Definition 2. Then, $\tilde{\boldsymbol{g}}$ defines a homomorphism $\psi_{\tilde{g}}: M_{g} \rightarrow{ }_{p} \tilde{G}$. This $\psi_{\tilde{g}}$ (up to braid equivalence) gives ${ }_{p} \tilde{G}$ as a limit group of ψ_{g}.

Expression (1) (resp. (2)) means ${ }_{p} \tilde{G}$ is a (resp. the only) isomorphism class of limit groups for the standard component tree.

Cohomology start:

With $M_{k}=\operatorname{ker}\left(G_{k+1} \rightarrow G_{k}\right)$, $\operatorname{dim}_{\mathbb{Z} / p}\left(H^{2}\left(G_{k}, M_{k}\right)\right)=1$ [Fr95, Lem. 2.3].
Lemma 3. [Fr05c, Lem. 4.15], [We05, Prop. 3.2] For $\boldsymbol{g}_{k} \in C_{G_{k}}(\boldsymbol{g})$, the obstruction to finding $\boldsymbol{g}_{k+1} \in C_{G_{k+1}}\left(\boldsymbol{g}_{k}\right)$ is inflation $\inf _{G_{k+1}, G_{k}}\left(\psi_{\boldsymbol{g}_{k}}\right)$ to $H^{2}\left(M_{g}, M_{k}\right)$ of a generator of $H^{2}\left(G_{k}, M_{k}\right)$.

Denote maximal quotient of M_{k} on which G_{k} acts trivially by $\mathrm{Sc}_{p, k}=\mathrm{Sc}_{k}$: exponent p quotient of Schur multiplier of G_{k}.

The lifting invariant s_{k}
Kernel of natural cover $R_{k} \rightarrow G_{k}$ identifies withSc ${ }_{k}$. Lemma 4. Over $\boldsymbol{g}^{\prime}=\left(g_{1}^{\prime}, \ldots, g_{r}^{\prime}\right) \in \mathrm{Ni}\left(G_{k}, \mathbf{C}\right)$ is a unique $\boldsymbol{g}^{\prime \prime} \in\left(R_{k}\right)^{r} \cap \mathbf{C}$. This defines

$$
\begin{gathered}
s_{k}\left(\boldsymbol{g}^{\prime}\right) \in \operatorname{ker}\left(R_{k} \rightarrow G_{k}\right) \text { as } \Pi\left(\boldsymbol{g}^{\prime \prime}\right) \stackrel{\text { def }}{=} g_{1}^{\prime \prime} \cdots g_{r}^{\prime \prime} \\
C_{G_{k+1}}\left(\boldsymbol{g}^{\prime}\right) \text { nonempty } \xlongequal{\Longrightarrow} s_{k}\left(\boldsymbol{g}^{\prime}\right)=0 \text { (add. not.). }
\end{gathered}
$$

[Ser90a] defines s_{k} when $G_{k}=A_{n}$ and $R_{k} \rightarrow G_{k}$ is the Spin cover of A_{n}. I give examples later of computing this and higher cases.

Part III. p-Poincaré duality gives sufficiency for

$$
C_{G_{k+1}}\left(\boldsymbol{g}_{k}\right) \neq \emptyset
$$

Proposition 5. Lem. 4 condition is sufficient:

$$
\tilde{\alpha} \stackrel{\text { def }}{=} \inf _{G_{k+1}, G_{k}}\left(\psi_{\boldsymbol{g}_{k}}\right) \neq 0 \Longrightarrow s_{k}\left(\boldsymbol{g}_{k}\right) \neq 0
$$

Use μ_{k+1} of Lem. 1 for an explicit obstruction to lifting $M_{g} \rightarrow G$. For $\bar{g} \in M_{g}$ choose $h_{\bar{g}} \in G_{k}$ as the image in G_{k} of a lift to $\tilde{K}_{\bar{\sigma}^{*}} \cap \mathbf{C}$ over \bar{g}.

Compute the 2-cocycle

$$
\tilde{\alpha}\left(\bar{g}_{1}, \bar{g}_{2}\right)=h_{\bar{g}_{1}} h_{\bar{g}_{2}}\left(h_{\overline{g_{1} g_{2}}}\right)^{-1}, \bar{g}_{1}, \bar{g}_{2} \in M_{g}
$$

describing the obstruction.
As $\psi_{\bar{\sigma}^{*}}$ is a homomorphism, the discrepancy between $\alpha\left(\bar{g}_{1}, \bar{g}_{2}\right)$ and 1 is the leeway in reps. for $h_{\overline{g_{1} g_{2}}}$ lying over $\overline{g_{1} g_{2}}$.

When the cocycle $\tilde{\alpha}\left(\bar{g}_{1}, \bar{g}_{2}\right)$ vanishes

Each $\tilde{\alpha}\left(\bar{g}_{1}, \bar{g}_{2}\right)$ is a word in $\operatorname{ker}\left(K_{\bar{\sigma}^{*}} \rightarrow M_{g}\right)$, products of conjugates of $h_{1}^{*} \cdots h_{r}^{*}$. It vanishes if you can choose $\left(h_{1}^{*}, \ldots, h_{r}^{*}\right.$) (as in Lem. 1) so $h_{1}^{*} \cdots h_{r}^{*}=1$. Recall: Dual of M_{k}^{*} as an M_{g} module is $\operatorname{Hom}\left(M_{k}, \mathbb{Q}_{p} / \mathbb{Z}_{p}\right)=\operatorname{Hom}\left(M_{k}, \mathbb{Z} / p\right),\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right.$ is the duality module for M_{g}).

Apply p-Poincaré duality:

$$
\left(\mathrm{D}^{2,0}\right) H^{2}\left(M_{g}, M_{k}\right) \times H^{0}\left(M_{\boldsymbol{g}}, M_{k}^{*}\right) \rightarrow H^{2}\left(M_{g}, \mathbb{Z} / p\right)
$$ is a perfect pairing (apply $\beta \in H^{0}\left(M_{\boldsymbol{g}}, M_{k}^{*}\right)$ to values of a 2-cycle in $H^{2}\left(M_{g}, M_{k}\right)$).

Identify $H^{0}\left(M_{g}, M_{k}^{*}\right)$ with

$$
H_{0}\left(M_{\boldsymbol{g}}, D \otimes M_{k}\right) \simeq D \otimes_{\mathbb{Z} / p\left[M_{\boldsymbol{g}}\right]} M_{k},
$$

with $D=\mathbb{Z} / p$ (as $\mathbb{Z} / p\left[M_{g}\right]$ module).

$\mathrm{Sc}_{p, k}$ appears (p. 7):

So, the tensor product $D \otimes_{\mathbb{Z} / p\left[M_{g}\right]} M_{k}$ is the maximal quotient of M_{k} on which M_{g} (and so G_{k}) acts trivially. So, Identify $D \otimes_{\mathbb{Z} / p\left[M_{g}\right]} M_{k}$ with $\mathrm{Sc}_{p, k}$.

Now pair $\tilde{\alpha}(\bullet, \bullet) \in H^{2}\left(M_{g}, M_{k}\right)$ against
$\beta \in H^{0}\left(M_{g}, M_{k}^{*}\right)$. Further, regard $\beta \stackrel{\text { def }}{=} \beta_{R}$ as the linear functional on M_{k} from the kernel of the induced $\operatorname{map} G_{k+1} \rightarrow R$, with $R \rightarrow G_{k}$ a central extension with $\mathbb{Z} / p=\operatorname{ker}\left(R \rightarrow G_{k}\right)$.

Conclusion of the result

Let \boldsymbol{g} be the image of $\left(h_{1}^{*}, \ldots, h_{r}^{*}\right)$ in $\mathrm{Ni}\left(G_{k}, \mathbf{C}\right)$. So, $\beta_{R}(\tilde{\alpha})=s_{R}(\boldsymbol{g})$, the lifting invariant value.

The pairing is perfect. Conclude: Obstruction to extend $M_{g} \rightarrow G_{k}$ to $M_{g} \rightarrow G_{k+1}$ is trivial if and only if $s_{R}(\boldsymbol{g})$ is trivial over all such $R \rightarrow G_{k}$.

Part IV. Basic Braid Orbit questions

Hurwitz monodromy group $H_{r}=\left\langle q_{1}, \ldots, q_{r-1}\right\rangle$ acts on $\left\{M_{g}\right\}_{\boldsymbol{g} \in \mathrm{Ni}(G, \mathbf{C})}$ and on

$$
\left\{M_{\tilde{g}}\right\}_{\left\{\tilde{\boldsymbol{g}} \in\left\{\lim _{\leftarrow k} C_{G_{k}}(\boldsymbol{g})\right\}\right.} .
$$

Here's q_{i} on distinguished generators: $\left(\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{r}\right)$

$$
\mapsto\left(\bar{\sigma}_{1}, \ldots, \bar{\sigma}_{i-1}, \bar{\sigma}_{i} \bar{\sigma}_{i+1} \bar{\sigma}_{i}^{-1}, \bar{\sigma}_{i}, \bar{\sigma}_{i+2}, \ldots, \bar{\sigma}_{r}\right) .
$$

Projective sequence of spaces:

Any $M_{\tilde{g}}$ gives a braid orbit $\{(\tilde{\boldsymbol{g}}) q\}_{q \in H_{r}} \stackrel{\text { def }}{=} \tilde{O}$: For $\tilde{\boldsymbol{g}} \in \tilde{O}$, all the $M_{\tilde{g}}$ are isomorphic.
\tilde{O} defines a projective sequence of reduced Hurwitz space components $\tilde{\mathcal{H}}_{\tilde{O}} \stackrel{\text { def }}{=}\left\{\mathcal{H}_{\tilde{O}, k}\right\}_{k=0}^{\infty}$.

Abelianization: Replacing ${ }_{p} \tilde{G}$ by its abelianization ${ }_{p} \tilde{G} /\left(\operatorname{ker}_{0}, \operatorname{ker}_{0}\right)$ produces corresponding spaces. Let $R \rightarrow G_{0}$ be the maximal central p extension of G_{0}. Analog for abelianization in Prop. 5 for projective sequence of components requires just one test, $s_{R}\left(\boldsymbol{g}_{0}\right)=0$, but $\operatorname{ker}\left(R \rightarrow G_{0}\right)$ may not have exponent p. Resulting spaces like Shimura varieties.

The Main Conjecture and ℓ-adic points

1. For a braid orbit O in a Nielsen class $\mathrm{Ni}(G, \mathbf{C})$, how to assure there is such a \tilde{O} extending O ?
2. Given \tilde{O} from (1), when can you guarantee some number field is a definition field for all levels of $\tilde{\mathcal{H}}_{\tilde{O}}: \tilde{O}$ defines a PSC_{K} ?
3. Given (2), could all levels have K points?

Results to questions have come entirely through properties of projective systems of cusps!!
This approach -non-obviously -generalizes aspects of modular curves.
Proposition 6. Assume \tilde{O} satisfies (3). With K^{\prime} a completion of K at a prime not dividing $|G|$, there is a projective system of K^{\prime} cusps.

An outline, based on generalizing [DEm04], says the conclusion of Prop. 6 implies a special projective system $\left\{\boldsymbol{g}_{k} \in \operatorname{Ni}(G, \mathbf{C})^{\mathrm{in}}\right\}_{k=0}^{\infty}: g-p^{\prime}$ cusp branch.

Part V. g- p^{\prime} Cusps and 2nd Fratt. Princ.

Definition 7 ($\mathrm{g}-p^{\prime}$ cusps). Let p, prime, divide $|G|, p^{\prime}$ classes $\mathbf{C}, \boldsymbol{g}=\in \mathrm{Ni}(G, \mathbf{C})$. Then, \boldsymbol{g} defines a (first order) $g-p^{\prime}$ cusp if it partitions as $\left(g_{1}, \ldots, g_{i_{1}}, g_{i_{1}+1}, \ldots, g_{i_{2}}, \ldots, g_{i_{t}}\right)$ so:
[p^{\prime} part.] $\left\langle g_{i_{j}+1}, \ldots, g_{i_{j+1}}\right\rangle=G_{j}$ is a p^{\prime} group; and
[p^{\prime} gen. $]\left\langle\Pi\left(g_{i_{j}+1}, \ldots, g_{i_{j+1}}\right), j=1, \ldots, t\right\rangle$ is also a p^{\prime} group.
App. B_{1} has higher order (inductive) g-p p^{\prime} cusps.

- Typeset by FoilTEX -

2nd Fratt. Princ: For $\boldsymbol{g} \in \mathrm{Ni}(G, \mathbf{C})$ a g- p^{\prime} cusp, there is a \tilde{O} extending its braid orbit O_{g} (as in (1)).
A_{n} examples of two braid orbits from lifting inv.
Example 8 (A_{n} and 3-cycles). For each pair (n, r) with $r \geq n$, there are exactly two braid orbits on $\mathrm{Ni}\left(A_{n}, \mathbf{C}_{3^{r}}\right)$. One contains a g-2 ${ }^{\prime}$ representative and the other is obstructed at level 0 . Braid orbit reps for $n=r=4$ (see App. B_{2} in Talk 2):

$$
\begin{aligned}
& \boldsymbol{g}_{4,+}=((134),(143),(123),(132)), \\
& \boldsymbol{g}_{4,-}=((123),(134),(124),(124))
\end{aligned}
$$

Nonbraidable, isomorphic $M_{\tilde{g}}$

Suppose two extensions $M_{g_{i}} \rightarrow G$, arise from $\boldsymbol{g}_{i} \in \mathrm{Ni}(G, \mathbf{C}), i=1,2$. Assume they are isomorphic. Still might not be braidable.

The Nielsen class $\mathrm{Ni}\left(G_{1}\left(A_{4}\right), \mathbf{C}_{ \pm 3^{2}}\right)$ has six braid orbits. Two extensions correspond to the two H-M components called $\mathcal{H}_{1}^{+, \beta}, \mathcal{H}_{1}^{+, \beta^{-1}}$. An outer automorphism of $G_{1}\left(A_{4}\right)$ takes \boldsymbol{g}_{1} to \boldsymbol{g}_{2}, giving elements in different braid orbits. These are H M components, so FP2 gives isomorphic extensions $M_{g_{i}} \rightarrow{ }_{p} \tilde{G}, i=1,2$ in distinct braid orbits.

App. A_{1} : Full limit group questions

Consider all quotients H of ${ }_{p} \tilde{G}$ (rather than just $G_{k} \mathrm{~s}$). You get a much bigger world of limit groups: limit group over $\boldsymbol{g} \in \mathrm{Ni}(G, \mathbf{C})$ is a maximal projective sequence of such $H \mathrm{~s}$ with $\mathcal{C}_{H}(\boldsymbol{g})$ not the emptyset. Proposition 9. Akin to Prop. 5, if G^{*} is a full limit group, it has this property:
\mathbb{Z} / p extension: There is only one possible Frattini extension $R^{*} \rightarrow G^{*}$ of $G^{*} \rightarrow G$ with kernel $a \mathbb{Z} / p$ module. Then, $\operatorname{ker}\left(R^{*} \rightarrow G^{*}\right)=\mathbb{Z} / p$, and $s_{G^{*}}$ gives the obstruction.

Revisiting nonelementary modular curves: For each odd $p, \mathrm{Ni}\left((\mathbb{Z} / p)^{2} \times^{s}\{ \pm 1\}, \mathbf{C}_{2^{4}}\right)$ has exactly one limit group, $\left(\mathbb{Z}_{p}\right)^{2} \times^{s}\{ \pm 1\}$. This is an alternate description of all modular curves. A universal Heisenberg group gives the obstruction running over all odd p [Fr05c, App. A.2].

App. B_{1} : Higher Order $\mathrm{g}-p^{\prime}$ Cusps

Def.: (possibly higher order) g-p' cusps. (Darren Semmen): Some rooted planar tree, has elements of G labeling its vertices, and these hold.

1. The root has label 1 .
2. The leaves of the tree have labels g_{1}, \ldots, g_{r} in clockwise order.
3. Labels of vertices one level up and adjacent to vertex x generate a p^{\prime}-group with their product (in clockwise order) the label of x.

Harder to detect, but includes more possibilities than 1st order g - p^{\prime} reps. FP2 says such a \boldsymbol{g} has a braid orbit whose p-Nielsen limit is ${ }_{p} \tilde{G}$.

Bibliography

[BF02] Paul Bailey, and Michael D. Fried, Hurwitz monodromy, spin separation and higher levels of a modular tower, Arith. fund. groups and noncomm. alg. (Berk., CA, 1999), Proc. Sympos. Pure Math., vol. 70, AMS Prov. RI, 2002, pp. 79-220. MR1935406 (2005b:14044)
[Ca05a]A. Cadoret, Harbater-Mumford subvarieties of moduli spaces of covers, to appear in Math. Ann.
[De04] P. Dèbes, Modular Towers: Construction and Diophantine Questions, this volume.
[DDe04] P. Dèbes and B. Deschamps, Corps ψ-libres et théorie inverse de Galois infinie, J. für die reine und angew. Math. 574 (2004), 197-218
[DEm04] P. Dèbes and M. Emsalem, Harbater-Mumford Components and Hurwitz Towers, Journal of the Institute of Mathematics of Jussieu (2005).
[Fr95] Michael D. Fried, Introduction to modular towers: generalizing dihedral group-modular curve connections, Recent developments in the inverse Galois problem (Seattle, WA, 1993), Contemp. Math., vol. 186, Amer. Math. Soc., Providence, RI, 1995, pp. 111-171. [MR1352270 (97a:11070)]
[Fr05a] M. D. Fried, The place of exceptional covers among all diophantine relations, J. Finite Fields 11 (2005) 367-433, www.math.uci.edu/~mfried/\#math.
[Fr05b] M. D. Fried, Alternating groups and moduli space lifting invariants: www.math.uci.edu/~mfried/\#mt.
[Fr05c] M. D. Fried, The Main Conjecture of Modular Towers and its higher rank generalization, in Groupes de Galois arith. et diff. (Lum. 2004; eds. D. Bertrand and P. Dèbes), Sem. et Congres 13, 2006. www.math.uci.edu/~mfried/talkfiles/lum03-12-04.html
[Fr05d] M.D. Fried, 5 lectures on the profinite
geometry and arithmetic of Modular Towers (MTs); London, Ontario, October 2005, www.math.uci.edu/~ mfried/talkfiles/london-texas10-05.html:

1. Dihedral groups: Seeing cusps on modular curves from their MT Viewpoint.
2. Alternating groups: The role of g-p' cusps.
3. Colloq.: Cryptography and Schur's Conjecture.
4. Limit groups: Mapping class group orbits and maximal Frattini quotients of dimension 2 p-Poincarè dual groups.
5. Galois closure groups: Outline proof of the Main Conjecture for $r=4$; variants of Regular Inverse Galois Problem; Serre's Open Image Theorem.
[Fr06] M. D. Fried, Riemann's existence theorem: An
elementary approach to moduli, Five of the six chapters are at www.math.uci.edu/ ${ }^{m}$ fried/\#ret.
[FrJ04] M. D. Fried and M. Jarden, Field arithmetic, Ergebnisse der Mathematik III, 11, Springer Verlag, New edition 2004, ISBN 3-540-22811-x.
[R90] K. Ribet, Review of [Ser68], BAMS 22 (1990), 214-218.
[Ser68] J.-P. Serre, Abelian ℓ-adic representations and elliptic curves, 1st ed., McGill Univ. Lecture Notes, Benjamin, NY • Amst., 1968, written in collab. with Willem Kuyk and John Labute; 2nd corrected ed. pub. by A. K. Peters, Wellesley, MA, 1998.
[Ser90a] J.-P. Serre, Relêvements dans \tilde{A}_{n}, C. R. Acad. Sci. Paris 311 (1990), 477-482.
[Ser90b] J.-P. Serre, Revêtements a ramification impaire et thêta-caractéristiques, C. R. Acad. Sci. Paris 311 (1990), 547-552.
[Ser91] J.-P. Serre, Galois Cohomology, translated from the Springer French edition of 1964 by Patrick lon, 1997, based on the revised (and completed) fifth French edition of 1994.
[We05] Th. Weigel, Maximal ℓ-Frattini quotients of ℓ-Poincare duality groups of dimension 2, volume for O. H. Kegel on his 70th birthday, Arkiv der Mathematik-Basel (2005).
