The phrase "Profinite Arithmetic Geometry" Red Lodge, Wednesday April 5

- Part I. 1st Fratt. Principle and the group $M_{\boldsymbol{g}}$
- Part II. Inflation to $M_{\boldsymbol{g}} = M_{\boldsymbol{g},p}$ and Lift Invariants
- Part III. *p*-Poincaré duality gives sufficiency for $C_{G_{k+1}}(\boldsymbol{g}_k) \neq \emptyset$
- Part IV. Basic Braid Orbit questions
- Part V. g-p' Cusps and 2nd Fratt. Princ.
- App.A₂. Full limit group questions
- App.B₁. Higher Order g-p' Cusps

Set up for the phrase

Start with a space \mathcal{H} (or a moduli problem): points $p \Leftrightarrow$ objects W_p with an attached group G(not dependent on p). Assume G has a functorial profinite cover G^* (determined by \mathcal{H}).

"Profinite arithmetic geometry:" Any quotient Hof G^* mapping through G gives a collection $C_H(W_p)$ of objects mapping to W. Expect this for the projective system of those $C_H(W_p)$, running over H: Group cohomology of G^* interprets significant properties of the projective system $\{C_H(W_p)\}_H$.

ModularTowers: Unramified extensions of a cover $\mathbb{P}_z^1 = \mathbb{C}_z \dot{\cup} \{\infty\}$ is the project z-line; and W_p is a compact Riemann surface (geometrically Galois) cover $\varphi: X \to \mathbb{P}^1_{\gamma}$ with group G (of order divisible by p). It has a Nielsen class $Ni(G, \mathbf{C})^{in}$. **Extensions**: Unramified extensions $\psi: Y \to X$ of φ , with $\varphi \circ \psi$ Galois (group H) as φ varies. If $H \to G$ splits, then $\varphi \circ \psi$ has the form $W \times_{\mathbb{P}^1_z} X$ $(W \rightarrow \mathbb{P}^1_{\gamma} \text{ maybe not Galois}).$ Unless $H \rightarrow G$ *Frattini*, there is a proper factorization of $\varphi: Y \rightarrow \varphi$ $Y' \to X$, presenting Y as $W \times_{\mathbb{P}_{2}} Y'$.

Part I. 1st Fratt. Principle and the group M_g Restrict to most mysterious part: Covers without such a factorization. Denote these C_{φ} . Assume G is p-perfect. We'll show structure on C_{φ} , based on cohomology of two groups:

• universal *p*-Frattini cover ${}_{p}\tilde{G}$ of *G*; and a • dim 2 *p*-Poincaré Dual group $M_{\varphi,p}$.

Both groups are virtually pro-p. Most significant is how much $M_{\varphi,p}$ depends on φ .

Use Nielsen classes

Ni
$$(G, \mathbf{C})^{\text{in}} \stackrel{\text{def}}{=} \{ (g_1, \dots, g_r) \mid g_1 \cdots g_r \stackrel{\text{def}}{=} \Pi(\mathbf{g}) = 1, \mathbf{g} \in \mathbf{C}, \langle \mathbf{g} \rangle = G \}.$$

Given the Nielsen class association with a cover, $\varphi \leftrightarrow \boldsymbol{g} \in \operatorname{Ni}(G, \mathbf{C})^{\operatorname{in}}$, characterize $C_H(\varphi)$ as

 $\{ \boldsymbol{g}_{H} \in \operatorname{Ni}(H, \mathbf{C})^{\operatorname{in}} \text{ with } \boldsymbol{g}_{H} \mod G = \boldsymbol{g} \}.$ FP1 — Why p' conjugacy classes \mathbf{C} ?: With $g \in G$ and $p^{u} || \operatorname{ord}(g), u \geq 1$, then $g' \in G_{1}$ over $g \implies p^{u+1} || \operatorname{ord}(g)$.

Defining M_g and related groups Define $D_{\bar{\sigma}}$: Presented as $\langle \bar{\sigma}_1, \ldots, \bar{\sigma}_r \rangle$ modulo the normal subgroup generated by

$$\bar{\boldsymbol{\sigma}} \stackrel{\text{def}}{=} \{ \bar{\sigma}_i^{\operatorname{ord}(g_i)}, i = 1, \ldots, r, \text{ and } \bar{\sigma}_1 \cdots \bar{\sigma}_r \}.$$

Define $M_{\boldsymbol{g}}$: Complete $D_{\bar{\boldsymbol{\sigma}}}$ using p-power index subgroups of ker $(D_{\bar{\boldsymbol{\sigma}}} \to G)$, normal in $D_{\bar{\boldsymbol{\sigma}}}$. Tacit: $M_{\boldsymbol{g}}$ has distinguished generators $\bar{\sigma}_1, \ldots, \bar{\sigma}_r$.

Define $\tilde{K}_{\bar{\sigma}^*}$:

Remove relation $\bar{\sigma}_1 \cdots \bar{\sigma}_r = 1$ from $D_{\bar{\sigma}}$. Denote generators by $\bar{\sigma}_1^*, \ldots, \bar{\sigma}_r^*$: $\{\langle \bar{\sigma}_i^* \rangle / (\bar{\sigma}_i^*)^{\operatorname{ord}(g_i)} \}_{i=1}^r$ freely generate $K_{\bar{\sigma}}$. Complete $K_{\bar{\sigma}^*}$ using *p*-power index subgroups of $\ker(K_{\bar{\sigma}^*} \to G)$, normal in K_{σ} . Form a natural surjection $\psi_{\bar{\sigma}^*} : \tilde{K}_{\bar{\sigma}^*} \to M_{\sigma}$. Geometric construction of M_g and $K_{\bar{\sigma}^*}$ Suppose $g_k \in \operatorname{Ni}(G_k, \mathbb{C})$ lies over $g \in \operatorname{Ni}(G, \mathbb{C})$. Lemma 1. Mapping M_g generators $\bar{\sigma}_1, \ldots, \bar{\sigma}_r$ to entries of $_k g$ gives a homomorphism $\mu_k : M_g \to G_k$. If $h_1^*, \ldots, h_r^* \in \mathbb{C} \cap G_{k+1}^r$ lie (resp.) over entries of $_k g$, then $\mu_{k+1} : \tilde{K}_{\bar{\sigma}^*} \to G_{k+1}$ by $\bar{\sigma}_i^* \mapsto h_i^*$, $i = 1, \ldots, r$, extends μ_k . Part II.Inflation to $M_{g} = M_{g,p}$ and Lift Invariants Main goal: Cohomological characterizations 1. When is each of the $C_{G_{k}}(g)$ nonempty.

2. When for each $\boldsymbol{g}_k \in C_{G_k}(\boldsymbol{g})$ and k' > k, the collection $C_{G_{k'}}(\boldsymbol{g}_k)$ is nonempty.

One-one correspondence: $M_{\boldsymbol{g}} \to G$ factoring through $H \to G \Leftrightarrow \boldsymbol{g}_H \in C_H(\boldsymbol{g})$. Denote the corresponding map $M_{\boldsymbol{g}} \to H$ by $\psi_{\boldsymbol{g}_H}$.

Fundamental limit group questions

Let $\{\boldsymbol{g}_k \in C_{G_k}(\boldsymbol{g})\}_{k=0}^{\infty}\} = \tilde{\boldsymbol{g}}$ be a projective sequence. Defines a *cusp* branch.

These define a *component* branch: ${Ni'_k}_{k=0}^{\infty}$, Ni'_k the *braid orbit* of \boldsymbol{g}_k (p. 12).

Definition 2. Then, \tilde{g} defines a homomorphism $\psi_{\tilde{g}}: M_g \to {}_p \tilde{G}$. This $\psi_{\tilde{g}}$ (up to braid equivalence) gives ${}_p \tilde{G}$ as a limit group of ψ_g . Expression (1) (resp. (2)) means ${}_p \tilde{G}$ is a (resp. the only) isomorphism class of limit groups for the standard component tree.

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Cohomology start:

With
$$M_k = \ker(G_{k+1} \to G_k)$$
,
 $\dim_{\mathbb{Z}/p}(H^2(G_k, M_k)) = 1$ [Fr95, Lem. 2.3].

Lemma 3. [Fr05c, Lem. 4.15], [We05, Prop. 3.2] For $\boldsymbol{g}_k \in C_{G_k}(\boldsymbol{g})$, the obstruction to finding $\boldsymbol{g}_{k+1} \in C_{G_{k+1}}(\boldsymbol{g}_k)$ is inflation $\inf_{G_{k+1},G_k}(\psi_{\boldsymbol{g}_k})$ to $H^2(M_{\boldsymbol{g}}, M_k)$ of a generator of $H^2(G_k, M_k)$.

Denote maximal quotient of M_k on which G_k acts trivially by $Sc_{p,k} = Sc_k$: exponent p quotient of Schur multiplier of G_k .

The lifting invariant s_k

Kernel of natural cover $R_k \to G_k$ identifies with Sc_k . **Lemma 4.** Over $\mathbf{g}' = (g'_1, \dots, g'_r) \in Ni(G_k, \mathbf{C})$ is a unique $\mathbf{g}'' \in (R_k)^r \cap \mathbf{C}$. This defines

 $s_k(\boldsymbol{g}') \in \ker(R_k \to G_k) \text{ as } \Pi(\boldsymbol{g}'') \stackrel{\text{def}}{=} g_1'' \cdots g_r''.$ $C_{G_{k+1}}(\boldsymbol{g}') \text{ nonempty} \implies s_k(\boldsymbol{g}') = 0 \text{ (add. not.).}$ [Ser90a] defines s_k when $G_k = A_n$ and $R_k \to G_k$ is the Spin cover of A_n . I give examples later of computing this and higher cases.

Part III. *p*-Poincaré duality gives sufficiency for $C_{G_{k+1}}(\boldsymbol{g}_k) \neq \emptyset$

Proposition 5. Lem. 4 condition is sufficient:

$$\tilde{\alpha} \stackrel{\text{def}}{=} \inf_{G_{k+1}, G_k} (\psi_{\boldsymbol{g}_k}) \neq 0 \implies s_k(\boldsymbol{g}_k) \neq 0.$$

Use μ_{k+1} of Lem. 1 for an explicit obstruction to lifting $M_{g} \to G$. For $\overline{g} \in M_{g}$ choose $h_{\overline{g}} \in G_{k}$ as the image in G_{k} of a lift to $\tilde{K}_{\overline{\sigma}^{*}} \cap \mathbf{C}$ over \overline{g} .

Compute the 2-cocycle

$$\tilde{\alpha}(\bar{g}_1, \bar{g}_2) = h_{\bar{g}_1} h_{\bar{g}_2} (h_{\overline{g_1g_2}})^{-1}, \bar{g}_1, \bar{g}_2 \in M_{\boldsymbol{g}}$$

describing the obstruction.

As $\psi_{\bar{\sigma}^*}$ is a homomorphism, the discrepancy between $\alpha(\bar{g}_1, \bar{g}_2)$ and 1 is the leeway in reps. for $h_{\overline{g_1g_2}}$ lying over $\overline{g_1g_2}$.

When the cocycle $ilde{lpha}(ar{g}_1,ar{g}_2)$ vanishes

Each $\tilde{\alpha}(\bar{g}_1, \bar{g}_2)$ is a word in $\ker(K_{\bar{\sigma}^*} \to M_g)$, products of conjugates of $h_1^* \cdots h_r^*$. It vanishes if you can choose (h_1^*, \ldots, h_r^*) (as in Lem. 1) so $h_1^* \cdots h_r^* = 1$. Recall: Dual of M_k^* as an M_g module is $\operatorname{Hom}(M_k, \mathbb{Q}_p/\mathbb{Z}_p) = \operatorname{Hom}(M_k, \mathbb{Z}/p)$, $(\mathbb{Q}_p/\mathbb{Z}_p)$ is the duality module for M_g).

Apply *p*-Poincaré duality:

 $(\mathsf{D}^{2,0}) H^2(M_{\boldsymbol{g}}, M_k) \times H^0(M_{\boldsymbol{g}}, M_k^*) \to H^2(M_{\boldsymbol{g}}, \mathbb{Z}/p)$ is a perfect pairing (apply $\beta \in H^0(M_{\boldsymbol{g}}, M_k^*)$ to values of a 2-cycle in $H^2(M_{\boldsymbol{g}}, M_k)$). Identify $H^0(M_{\boldsymbol{g}}, M_k^*)$ with

$$H_0(M_{\boldsymbol{g}}, D \otimes M_k) \simeq D \otimes_{\mathbb{Z}/p[M_{\boldsymbol{g}}]} M_k,$$

with $D = \mathbb{Z}/p$ (as $\mathbb{Z}/p[M_g]$ module).

$Sc_{p,k}$ appears (p. 7):

So, the tensor product $D \otimes_{\mathbb{Z}/p[M_g]} M_k$ is the maximal quotient of M_k on which M_g (and so G_k) acts trivially. So, Identify $D \otimes_{\mathbb{Z}/p[M_g]} M_k$ with $\operatorname{Sc}_{p,k}$.

Now pair $\tilde{\alpha}(\bullet, \bullet) \in H^2(M_g, M_k)$ against $\beta \in H^0(M_g, M_k^*)$. Further, regard $\beta \stackrel{\text{def}}{=} \beta_R$ as the linear functional on M_k from the kernel of the induced map $G_{k+1} \to R$, with $R \to G_k$ a central extension with $\mathbb{Z}/p = \ker(R \to G_k)$.

Conclusion of the result

Let \boldsymbol{g} be the image of (h_1^*, \ldots, h_r^*) in $\operatorname{Ni}(G_k, \mathbf{C})$. So, $\beta_R(\tilde{\alpha}) = s_R(\boldsymbol{g})$, the lifting invariant value.

The pairing is perfect. Conclude: Obstruction to extend $M_{g} \rightarrow G_{k}$ to $M_{g} \rightarrow G_{k+1}$ is trivial if and only if $s_{R}(g)$ is trivial over all such $R \rightarrow G_{k}$.

Part IV. Basic Braid Orbit questions *Hurwitz monodromy* group $H_r = \langle q_1, \ldots, q_{r-1} \rangle$ acts on $\{M_g\}_{g \in Ni(G, \mathbb{C})}$ and on

$$\{M_{\tilde{\boldsymbol{g}}}\}_{\{\tilde{\boldsymbol{g}}\in\{\underset{\leftarrow}{\lim}C_{G_{k}}(\boldsymbol{g})\}}.$$

Here's q_i on distinguished generators: $(\bar{\sigma}_1, \ldots, \bar{\sigma}_r)$

$$\mapsto (\bar{\sigma}_1,\ldots,\bar{\sigma}_{i-1},\bar{\sigma}_i\bar{\sigma}_{i+1}\bar{\sigma}_i^{-1},\bar{\sigma}_i,\bar{\sigma}_{i+2},\ldots,\bar{\sigma}_r).$$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Projective sequence of spaces:

Any $M_{\tilde{g}}$ gives a braid orbit $\{(\tilde{g})q\}_{q\in H_r} \stackrel{\text{def}}{=} \tilde{O}$: For $\tilde{g} \in \tilde{O}$, all the $M_{\tilde{g}}$ are isomorphic.

 \tilde{O} defines a projective sequence of reduced Hurwitz space components $\tilde{\mathcal{H}}_{\tilde{O}} \stackrel{\text{def}}{=} {\mathcal{H}}_{\tilde{O},k} \}_{k=0}^{\infty}$.

Abelianization: Replacing ${}_{p}G$ by its abelianization ${}_{p}\tilde{G}/(\ker_{0}, \ker_{0})$ produces corresponding spaces. Let $R \to G_{0}$ be the maximal central p extension of G_{0} . Analog for abelianization in Prop. 5 for projective sequence of components requires just one test, $s_{R}(\boldsymbol{g}_{0}) = 0$, but $\ker(R \to G_{0})$ may not have exponent p. Resulting spaces like Shimura varieties.

The Main Conjecture and ℓ -adic points

- 1. For a braid orbit O in a Nielsen class $Ni(G, \mathbf{C})$, how to assure there is such a \tilde{O} extending O?
- 2. Given \tilde{O} from (1), when can you guarantee some number field is a definition field for all levels of $\tilde{\mathcal{H}}_{\tilde{O}}$: \tilde{O} defines a PSC_K ?
- 3. Given (2), could all levels have K points?

Results to questions have come entirely through properties of projective systems of *cusps*!!

This approach — non-obviously — generalizes aspects of modular curves.

Proposition 6. Assume \tilde{O} satisfies (3). With K' a completion of K at a prime not dividing |G|, there is a projective system of K' cusps.

An outline, based on generalizing [DEm04], says the conclusion of Prop. 6 implies a special projective system $\{\boldsymbol{g}_k \in \operatorname{Ni}(G, \mathbf{C})^{\operatorname{in}}\}_{k=0}^{\infty}$: *g-p' cusp branch*.

Part V. g-p' Cusps and 2nd Fratt. Princ.

Definition 7 (g-p' **cusps).** Let p, prime, divide |G|, p' classes **C**, $g = \in \operatorname{Ni}(G, \mathbb{C})$. Then, g defines a (first order) g-p' cusp if it partitions as $(g_1, \ldots, g_{i_1}, g_{i_1+1}, \ldots, g_{i_2}, \ldots, g_{i_t})$ so:

[p' part.] $\langle g_{i_j+1}, \ldots, g_{i_{j+1}} \rangle = G_j \text{ is a } p' \text{ group; and}$

 $[p' \text{ gen}] \langle \Pi(g_{i_j+1}, \dots, g_{i_{j+1}}), j = 1, \dots, t \rangle$ is also a p' group. App. B₁ has higher order (inductive) g-p' cusps. 2nd Fratt. Princ: For $g \in Ni(G, \mathbb{C})$ a g-p' cusp, there is a \tilde{O} extending its braid orbit O_g (as in (1)).

 A_n examples of two braid orbits from lifting inv. **Example 8 (** A_n and 3-cycles). For each pair (n, r)with $r \ge n$, there are exactly two braid orbits on Ni(A_n, C_{3^r}). One contains a g-2' representative and the other is obstructed at level 0. Braid orbit reps for n = r = 4 (see App. B₂ in Talk 2):

$$\begin{array}{ll} {\pmb g}_{4,+} = & ((1\,3\,4), (1\,4\,3), (1\,2\,3), (1\,3\,2)), \\ {\pmb g}_{4,-} = & ((1\,2\,3), (1\,3\,4), (1\,2\,4), (1\,2\,4)). \end{array}$$

Nonbraidable, isomorphic $M_{\tilde{g}}$

Suppose two extensions $M_{g_i} \to G$, arise from $g_i \in \operatorname{Ni}(G, \mathbb{C})$, i = 1, 2. Assume they are isomorphic. Still might not be braidable.

The Nielsen class $\operatorname{Ni}(G_1(A_4), \mathbf{C}_{\pm 3^2})$ has six braid orbits. Two extensions correspond to the two H-M components called $\mathcal{H}_1^{+,\beta}$, $\mathcal{H}_1^{+,\beta^{-1}}$. An *outer* automorphism of $G_1(A_4)$ takes \boldsymbol{g}_1 to \boldsymbol{g}_2 , giving elements in different braid orbits. These are H-M components, so *FP2* gives isomorphic extensions $M_{\boldsymbol{g}_i} \to {}_p \tilde{G}$, i = 1, 2 in distinct braid orbits.

App. A₁: Full limit group questions

Consider all quotients H of ${}_{p}G$ (rather than just G_{k} s). You get a much bigger world of limit groups: limit group over $g \in \operatorname{Ni}(G, \mathbb{C})$ is a maximal projective sequence of such H s with $C_{H}(g)$ not the emptyset. **Proposition 9.** Akin to Prop. 5, if G^{*} is a full limit group, it has this property:

 \mathbb{Z}/p extension: There is only one possible Frattini extension $R^* \to G^*$ of $G^* \to G$ with kernel $a \mathbb{Z}/p$ module. Then, $\ker(R^* \to G^*) = \mathbb{Z}/p$, and s_{G^*} gives the obstruction.

Revisiting nonelementary modular curves: For each odd p, $\operatorname{Ni}((\mathbb{Z}/p)^2 \times^s \{\pm 1\}, \mathbb{C}_{2^4})$ has exactly one limit group, $(\mathbb{Z}_p)^2 \times^s \{\pm 1\}$. This is an alternate description of all modular curves. A universal Heisenberg group gives the obstruction running over all odd p [Fr05c, App. A.2]. App. B₁: Higher Order g-p' Cusps Def.: (possibly *higher order*) g-p' cusps. (Darren Semmen): Some rooted planar tree, has elements of G labeling its vertices, and these hold.

- 1. The root has label 1.
- 2. The leaves of the tree have labels g_1, \ldots, g_r in clockwise order.
- 3. Labels of vertices one level up and adjacent to vertex x generate a p'-group with their product (in clockwise order) the label of x.

Harder to detect, but includes more possibilities than 1st order g-p' reps. FP2 says such a g has a braid orbit whose p-Nielsen limit is ${}_{p}\tilde{G}$.

Bibliography

[BF02] Paul Bailey, and Michael D. Fried, Hurwitz monodromy, spin separation and higher levels of a modular tower, Arith. fund. groups and noncomm. alg. (Berk., CA, 1999), Proc. Sympos. Pure Math., vol. 70, AMS Prov. RI, 2002, pp. 79–220. MR1935406 (2005b:14044)

[Ca05a]A. Cadoret, *Harbater-Mumford subvarieties of moduli spaces of covers*, to appear in Math. Ann.

[De04] P. Dèbes, *Modular Towers: Construction and Diophantine Questions*, this volume.

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

[DDe04] P. Dèbes and B. Deschamps, Corps ψ-libres et théorie inverse de Galois infinie, J. für die reine und angew. Math.
574 (2004), 197–218

[DEm04] P. Dèbes and M. Emsalem, *Harbater-Mumford Components and Hurwitz Towers*, Journal of the Institute of Mathematics of Jussieu (2005).

[Fr95] Michael D. Fried, Introduction to modular towers: generalizing dihedral group-modular curve connections, Recent developments in the inverse Galois problem (Seattle, WA, 1993), Contemp. Math., vol. 186, Amer. Math. Soc., Providence, RI, 1995, pp. 111–171. [MR1352270 (97a:11070)]

– Typeset by $\ensuremath{\mathsf{FoilT}}\xspace{T_E\!X}$ –

[Fr05a] M. D. Fried, The place of exceptional covers among all diophantine relations, J. Finite Fields **11** (2005) 367–433, www.math.uci.edu/~mfried/#math.

[Fr05b] M. D. Fried, Alternating groups and moduli space *lifting invariants*: www.math.uci.edu/~mfried/#mt.

[Fr05c] M. D. Fried, *The Main Conjecture of Modular* Towers and its higher rank generalization, in Groupes de Galois arith. et diff. (Lum. 2004; eds. D. Bertrand and P. Dèbes), Sem. et Congres 13, 2006. www.math.uci.edu/~mfried/talkfiles/lum03-12-04.html

[Fr05d] M.D. Fried, 5 lectures on the profinite - Typeset by FoilT_FX -33

geometry and arithmetic of Modular Towers (MTs); London, Ontario, October 2005, www.math.uci.edu/~ mfried/talkfiles/london-texas10-05.html:

- 1. Dihedral groups: Seeing cusps on modular curves from their MT Viewpoint.
- 2. Alternating groups: The role of g-p' cusps.
- 3. Colloq.: Cryptography and Schur's Conjecture.
- 4. Limit groups: Mapping class group orbits and maximal Frattini quotients of dimension 2 p-Poincarè dual groups.
- Galois closure groups: Outline proof of the Main Conjecture for r=4; variants of Regular Inverse Galois Problem; Serre's Open Image Theorem.

[Fr06] M. D. Fried, *Riemann's existence theorem: An*

elementary approach to moduli, Five of the six chapters are at www.math.uci.edu/~mfried/#ret.

[FrJ04] M. D. Fried and M. Jarden, *Field arithmetic*, Ergebnisse der Mathematik III, **11**, Springer Verlag, New edition 2004, ISBN 3-540-22811-x.

[R90] K. Ribet, Review of [Ser68], BAMS 22 (1990), 214-218.

[Ser68] J.-P. Serre, Abelian ℓ-adic representations and elliptic curves, 1st ed., McGill Univ. Lecture Notes, Benjamin, NY ● Amst., 1968, written in collab. with Willem Kuyk and John Labute; 2nd corrected ed. pub. by A. K. Peters, Wellesley, MA, 1998.

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

- [Ser90a] J.-P. Serre, *Relêvements dans* \tilde{A}_n , C. R. Acad. Sci. Paris **311** (1990), 477–482.
- [Ser90b] J.-P. Serre, Revêtements a ramification impaire et thêta-caractéristiques, C. R. Acad. Sci. Paris **311** (1990), 547–552.
- [Ser91] J.-P. Serre, *Galois Cohomology*, translated from the Springer French edition of 1964 by Patrick Ion, 1997, based on the revised (and completed) fifth French edition of 1994.
- [We05] Th. Weigel, *Maximal* ℓ-*Frattini quotients of* ℓ-*Poincare duality groups of dimension 2*, volume for O. H. Kegel on his 70th birthday, Arkiv der Mathematik–Basel (2005).